Digitaler Temperaturtransmitter Mit HART®-Protokoll, Kopf- und Schienenversion Typen T32.1S, T32.3S

WIKA-Datenblatt TE 32.04

Weitere Zulassungen siehe Seite 8

Anwendungen

- Prozessindustrie
- Maschinen- und Anlagenbau

Leistungsmerkmale

- TÜV zertifizierte SIL-Version für Schutzeinrichtungen entwickelt nach IEC 61508 (Option)
- Einsatz in Sicherheitsanwendungen bis SIL 2 (einzelnes Gerät) und SIL 3 (redundante Verschaltung)
- Konfigurierbar mit nahezu jedem offenen Soft- und Hardwaretool
- Universell f
 ür den Anschluss von 1 oder 2 Sensoren
 - Widerstandsthermometer, Widerstandssensor
 - Thermoelement, mV-Sensor
 - Potentiometer
- Signalisierung nach NAMUR NE43, Sensorbruchüberwachung nach NE89, EMV nach NE21

Abb. links: Kopfversion, Typ T32.1S Abb. rechts: Schienenversion, Typ T32.3S

Beschreibung

Diese Temperaturtransmitter sind konzipiert zum universellen Einsatz in der Prozesstechnik. Sie verfügen über eine hohe Genauigkeit, galvanische Trennung und eine überdurchschnittliche Störsicherheit gegenüber elektromagnetischen Einflüssen. Über das HART®-Protokoll sind die Temperaturtransmitter T32 mit einer Vielzahl offener Konfigurationstools einstellbar (interoperabel). Neben den verschiedensten Sensortypen wie z. B. Sensoren nach DIN EN 60751, JIS C1606, DIN 43760, IEC 60584 oder DIN 43710 können auch kundenspezifische Sensorkennlinien mittels Eingabe von Wertepaaren (sog. Anwender-Linearisierung) hinterlegt werden.

Durch die Konfiguration auf einen Sensor mit Redundanz (Doppelsensor) wird bei einem Sensorfehler automatisch auf den funktionierenden Sensor umgeschaltet. Weiterhin besteht die Möglichkeit der Sensor-Drift-Erkennung. Damit erfolgt eine Fehlersignalisierung wenn der Betrag der Tempe-

raturdifferenz zwischen Sensor 1 und Sensor 2 größer wird als ein vom Anwender wählbarer Wert.

Die Transmitter T32 verfügen auch über zusätzliche ausgeklügelte Überwachungsfunktionalitäten wie die Überwachung der Sensor-Zuleitungswiderstände, Sensorbruchüberwachung nach NAMUR NE89 sowie die Messbereichsüberwachung. Überdies führen diese Transmitter umfangreiche zyklische Selbstüberwachungsfunktionen aus.

Die Abmessungen der Kopftransmitter sind abgestimmt auf DIN-Anschlussköpfe der Form B mit erweitertem Montageraum, z. B. WIKA Typ BSS.

Die Transmitter im Schienengehäuse sind für alle Normschienen nach IEC 60715 geeignet. Ausgeliefert werden diese Transmitter mit einer Grundkonfiguration oder konfiguriert nach Kundenvorgabe.

WIKA-Datenblatt TE 32.04 · 12/2023

Seite 1 von 17

Technische Daten

Messelement					
	Sensortyp	Max. konfigurierbarer Mess- bereich	Norm	Min. Messspan- ne (MS) ¹⁾	
Widerstandssensor	Pt100	-200 +850 °C [-328 +1.562 °F]	IEC 60751	10 K	
	Pt (x) ²⁾ 10 1000	-200 +850 °C [-328 +1.562 °F]	IEC 60751		
	JPt100	-200 +500 °C [-328 +932 °F]	JIS C1606:1989		
	Ni100	-60 +250 °C [-76 +482 °F]	DIN 43760:1987		
	Widerstandssensor 3)	0 8.370 Ω	n.a.	4 Ω	
Potentiometer ⁴⁾	Potentiometer 3)	0 100 %	n.a.	10 %	
Thermoelement-Typ	J	-210 +1.200 °C [-346 +2.192 °F]	IEC 60584-1	50 K	
	K	-270 +1.300 °C [-454 +2.372 °F]	IEC 60584-1		
	L (DIN)	-200 +900 °C [-328 +1.652 °F]	DIN 43710:1985		
	E	-270 +1.000 °C [-454 +1.832 °F]	IEC 60584-1		
	N	-270 +1.300 °C [-454 + 2.372 °F]	IEC 60584-1		
	Т	-270 +400 °C [-454 +752 °F]	IEC 60584-1		
	U	-200 +600 °C [-328 +1.112 °F]	DIN 43710:1985		
	R	-50 +1.768 °C [-58 +3.214 °F]	IEC 60584-1	150 K	
	S	-50 +1.768 °C [-58 +3.214 °F]	IEC 60584-1		
	В	0 1.820 °C [32 3.308 °F]	IEC 60584-1	200 K	
Spannungssensor	mV-Sensor 3)	-500 +1.800 mV	-	4 mV	

¹⁾ Der Transmitter kann unterhalb dieser Grenzwerte konfiguriert werden; dies ist aber aufgrund von Genauigkeitsverlusten nicht zu empfehlen.

⁴⁾ R_{gesamt} : 10 ... 100 $k\Omega$

Weitere Angaben zu: Messelement				
Messstrom bei der Messung	Max. 0,3 mA (Pt100)			
Schaltungsarten				
Widerstandsthermometer (RTD)	1 Sensor in 2-/4-/3-Leiterschaltung oder 2 Sensoren in 2-Leiterschaltung			
	→ weitere Hinweise siehe "Belegung der Anschlussklemmen"			
Thermoelemente (TE)	1 Sensor oder 2 Sensoren			
	→ weitere Hinweise siehe "Belegung der Anschlussklemmen"			
Max. Leitungswiderstand				
Widerstandsthermometer (RTD)	50 Ω je Leiter, 3-/4-Leiteranschluss			
Thermoelemente (TE)	5 k $Ω$ je Leiter			
Vergleichstellenkompensation, konfigurierbar	Interne Kompensation oder extern mit Pt100, mit Thermostat oder ausgeschaltet			

²⁾ x konfigurierbar zwischen 10 ... 1.000

³⁾ Diese Betriebsart ist bei der SIL-Option nicht zulässig.

Genauigkeitsangaben					
Eingang + Ausgang nach DIN EN 60770					
Sensortyp Eingang	Mittlerer Temperaturkoef- fizient (TK) je 10 K Umge- bungstemperaturänderung im Bereich -40 +85 °C ¹⁾	Messabweichung bei Referenzbedingungen nach DIN EN 60770, NE 145, gültig bei 23°C ±3 K	Einfluss der Zuleitungswi- derstände	Langzeitstabili- tät nach 1 Jahr	
Pt100 ²⁾ / JPt100 / Ni100	±(0,06 K + 0,015 % MW)	-200 °C \leq MW \leq 200 °C: \pm 0,10 K MW > 200 °C: \pm (0,1 K + 0,01 % IMW - 200 KI) ³⁾	4-Leiter: kein Einfluss (0 50 Ω je Ltg.)	$\pm 60~\text{m}\Omega$ oder 0,05 % vom MW, größerer Wert gilt	
Wider- standssensor ⁵⁾	±(0,01 Ω + 0,01 % MW)	≤ 890 Ω : 0,053 Ω ⁶⁾ oder 0,015 % MW ⁷⁾ ≤ 2.140 Ω : 0,128 Ω ⁶⁾ oder 0,015 % MW ⁷⁾ ≤ 4.390 Ω : 0,263 Ω ⁶⁾ oder 0,015 % MW ⁷⁾ ≤ 8.380 Ω : 0,503 Ω ⁶⁾ oder 0,015 % MW ⁷⁾	3-Leiter: $\pm 0.02~\Omega / 10~\Omega$ (0 50 Ω je Ltg.) 2-Leiter: Widerstand der Zuleitung $^{4)}$		
Potentiometer ⁵⁾	±(0,1 % MW)	R _{Teil} /R _{Gesamt} ist max. ±0,5 %	-	$\pm 20~\mu V$ oder 0,05 % vom MW, größerer Wert gilt	
Thermoelemente					
Typ J (Fe-CuNi)	MW > -150 °C: ±(0,07 K + 0,02 % IMWI)	-150 °C < MW < 0 °C: ±(0,3 K + 0,2 % IMWI) MW > 0 °C: ±(0,3 K + 0,03 % MW)	$6 \mu V / 1.000 \Omega^{8)}$	±20 μV oder 0,05 % vom MW, größerer Wert gilt	
Typ K (NiCr-Ni)	-150 °C < MW < 1.300 °C: ±(0,1 K + 0,02 % IMWI)	-150 °C < MW < 0 °C: ±(0,4 K + 0,2 % IMWI) 0 °C < MW < 1.300 °C: ±(0,4 K + 0,04 % MW)	6 μV / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ L (Fe-CuNi)	-150 °C < MW < 0 °C: ±(0,07 K + 0,02 % IMWI) MW > 0 °C: ±(0,07 K + 0,015 % MW)	-150 °C < MW < 0 °C: ±(0,3 K + 0,1 % IMWI) MW > 0 °C: ±(0,3 K + 0,03 % MW)	6 μ V / 1.000 Ω ⁸⁾	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ E (NiCr-Cu)	MW > -150 °C: ±(0,1 K + 0,015 % IMWI)	-150 °C < MW < 0 °C: ±(0,3 K + 0,2 % MW) MW > 0 °C: ±(0,3 K + 0,03 % MW)	6 μ V / 1.000 Ω ⁸⁾	±20 μV oder 0,05 % vom MW, größerer Wert gilt	
Typ N (NiCrSi-NiSi)	-150 °C < MW < 0 °C: ±(0,1 K + 0,05 % IMWI) MW > 0 °C: ±(0,1 K + 0,02 % MW)	-150 °C < MW < 0 °C: ±(0,5 K + 0,2 % IMWI) MW > 0 °C: ±(0,5 K + 0,03 % MW)	$6~\mu V$ / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ T (Cu-CuNi)	-150 °C < MW < 0 °C: ±(0,07 K + 0,04 % MW) MW > 0 °C: ±(0,07 K + 0,01 % MW)	-150 °C < MW < 0 °C: ±(0,4 K + 0,2 % IMWI) MW > 0 °C: ±(0,4 K + 0,01 % MW)	$6~\mu V$ / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ U (Cu-CuNi)	-150 °C < MW < 0 °C: ±(0,07 K + 0,04 % MW) MW > 0 °C: ±(0,07 K + 0,01 % MW)	-150 °C < MW < 0 °C: ±(0,4 K + 0,2 % MW) MW > 0 °C: ±(0,4 K + 0,01 % MW)	6 μV / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ R (PtRh-Pt)	50 °C < MW < 1.600 °C: ±(0,3 K + 0,01 % IMW - 400 KI)	50 °C < MW < 400 °C: ±(1,45 K + 0,12 % IMW - 400 KI) 400 °C < MW < 1.600 °C: ±(1,45 K + 0,01 % IMW - 400 KI)	$6~\mu V$ / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ S (PtRh-Pt)	50 °C < MW < 1.600 °C: ±(0,3 K + 0,015 % IMW - 400 KI)	50 °C < MW < 400 °C: ±(1,45 K + 0,12 % IMW - 400 KI) 400 °C < MW < 1.600 °C: ±(1,45 K + 0,01 % IMW - 400 KI)	$6~\mu V$ / 1.000 Ω $^{8)}$	±20 µV oder 0,05 % vom MW, größerer Wert gilt	
Typ B (PtRh-Pt)	450 °C < MW < 1.000 °C: ±(0,4 K + 0,02 % IMW - 1.000 KI) MW > 1.000 °C: ±(0,4 K + 0,005 % (MW - 1.000 K))	450 °C < MW < 1.000 °C: ±(1,7 K + 0,2 % IMW - 1.000 KI) MW > 1.000 °C: ±1,7 K	6 μV / 1.000 Ω ⁸⁾	±20 µV oder 0,05 % vom MW, größerer Wert gilt	

Genauigkeitsangaben					
Eingang + Ausgar	ng nach DIN EN 60770				
Sensortyp Eingang	Mittlerer Temperaturkoef- fizient (TK) je 10 K Umge- bungstemperaturänderung im Bereich -40 +85 °C ¹⁾	Messabweichung bei Referenzbedingungen nach DIN EN 60770, NE 145, gültig bei 23°C ±3 K	Einfluss der Zuleitungswi- derstände	Langzeitstabili- tät nach 1 Jahr	
mV-Sensor ⁵⁾	2 μV + 0,02 % IMWI 100 μV + 0,08 % IMWI	$\leq 1.160 \text{ mV: } 10 \mu\text{V} + 0.03 \% \text{IMWI} \\ > 1.160 \text{ mV: } 15 \mu\text{V} + 0.07 \% \text{IMWI}$	$6~\mu V$ / $1.000~\Omega$ $^{8)}$	±20 μV oder 0,05 % vom MW, größerer Wert gilt	
Vergleichsstelle (nur bei TE)	±0,1 K	±0,8 K	-	±0,2 K	
Ausgang	±0,03 % der Messspanne	±0,03 % der Messspanne	-	±0,05 % der Spanne	

Weitere Angaben zu: Genauigkeitsangaben				
Messrate (nur für RTD-/TE-Einzelsensor)	Typisch, Messwertaktualisierung ca. 6/s			
Einfluss der Hilfsenergie	Nicht messbar			
Bürdeneinfluss	Nicht messbar			

$$\label{eq:mw} \begin{split} \text{MW} &= \text{Messwert (Temperaturmesswerte in } ^\circ\text{C}) \\ \text{Messspanne} &= \text{konfiguriertes Messbereichsende} - \text{konf. Messbereichsanfang} \end{split}$$

- 1) T32.1S: Bei erweiterter Umgebungstemperatur (-50 \dots -40 °C) gilt der doppelte Wert
- 2) Für Sensor Ptx (x = 10 ... 1.000) gilt: für x ≥ 100: zulässiger Fehler, wie bei Pt100

für x < 100: zulässiger Fehler, wie bei Pt100 mit einem Faktor (100/x)

- 3) Zusätzlicher Fehler bei Widerstandsthermometern Anschlussart 3-Leiter bei abgeglichener Leitung: 0,05 K
 4) Der spezifizierte Widerstandswert der Sensorleitung kann vom ermittelten Sensorwiderstand abgezogen werden. Doppelsensor: für jeden Sensor getrennt konfigurierbar
- 5) Diese Betriebsart ist bei Option SIL (T32.xS.xxx-S) nicht zulässig.
- 6) Doppelter Wert bei 3-Leiter
- 7) Größerer Wert gilt
- 8) Im Bereich von 0 ... 10 k Ω Leitungswiderstand

Beispielrechnung

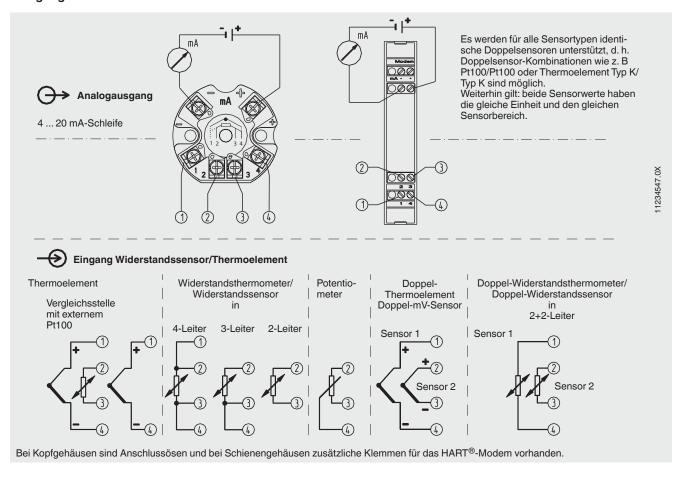
Pt100 / 4-Leiter / Messbereich 0 150 °C / Umgebungstemperatur 33 °C	
Eingang Pt100, MW < 200 °C	±0,100 K
Ausgang ±(0,03 % von 150 K)	±0,045 K
TK _{Eingang} ±(0,06 K + 0,015 % von 150 K)	±0,083 K
TK _{Ausgang} ±(0,03 % von 150 K)	±0,045 K
Messabweichung (typisch) √Eingang² + Ausgang² + TK _{Eingang} ² + TK _{Ausgang} ²	±0,145 K
Messabweichung (maximal) (Eingang + Ausgang + TK _{Eingang} + TK _{Ausgang})	±0,273 K

Pt1000 / 3-Leiter / Messbereich -50 +50 °C / Umgebungstemperatur 45 °C				
Eingang Pt1000, MW < 200 °C	±0,100 K			
Ausgang ±(0,03 % von 100 K)	±0,03 K			
$TK_{Eingang} \pm (0.06 \text{ K} + 0.015 \% \text{ von } 100 \text{ K}) * 2$	±0,15 K			
TK _{Ausgang} ±(0,03 % von 100 K) * 2	±0,06 K			
Messabweichung (typisch) √Eingang² + Ausgang² + TK _{Eingang} ² + TK _{Ausgang} ²	±0,19 K			
Messabweichung (maximal) (Eingang + Ausgang + TK _{Eingang} + TK _{Ausgang})	±0,34 K			

Thermoelement Typ K / Messbereich 0 400 °C / interne Kompensation (Vergleichsstelle) / Umgebungstemperatur 23 °C				
Eingang Typ K, 0 °C < MW < 1.300 °C ±(0,4 K + 0,04 % von 400 K)	±0,56 K			
Vergleichsstelle ±0,8 K	±0,80 K			
Ausgang ±(0,03 % von 400 K)	±0,12 K			
Messabweichung (typisch) √Eingang² + Vergleichsstelle² + Ausgang²	±0,98 K			
Messabweichung (maximal) (Eingang + Vergleichsstelle + Ausgang)	±1,48 K			

Ausgangssignal	= 4 00 × 4 0	D.L. altage	
Analogausgang (konfigurierbar)	■ 420 mA, 2-Leiter ■ 204 mA, 2-Leiter		
Temperaturlinearität	Für RTD	Temperaturlinear nach IEC 60751, JIS C1606, DIN 43760	
	Für TE	Temperaturlinear nach IEC 60584, DIN 43710	
Bürde R _A	Die zulässige Bi	ürde hängt ab von der Spannung der Schleifenversorgung.	
Mit HART®	$R_A \le (U_B - 11,5)$	V) / 0,023 A mit R_A in Ω und U_B in V	
Ohne HART®	$R_A \le (U_B - 10.5)$	V) / 0,023 A mit R_A in Ω und U_B in V	
Bürdendiagramm (ohne HART [®])	C :		
Ausgangsgrenzen (konfigurierbar)			
Nach NAMUR NE43	Untere Grenze	3,8 mA	
	Obere Grenze	20,5 mA	
Kundenspezifisch einstellbar	Untere Grenze	3,6 4,0 mA	
·	Obere Grenze	20,0 21,5 mA	
Option SIL (Typ T32.xS.xxx-S)	Untere Grenze	3,8 4,0 mA	
,	Obere Grenze	ze 20,0 20,5 mA	
Simulation	Im Simulationsmodus unabhängig vom Eingangssignal, Simulationswert konfigurierbar von 3,5 23,0 mA		
Stromwert für Signalisierung			
Nach NAMUR NE43	Zusteuernd	< 3,6 mA (3,5 mA)	
	Aufsteuernd	> 21,0 mA (21,5 mA)	
Einstellbereich	Zusteuernd	3,5 3,6 mA	
	Aufsteuernd	21,0 22,5 mA	
PV, primary value (digitaler HART®-Messwert)	Signalisierung bei Sensor- und Hardwarefehler durch Ersatzwert		
Dämpfung (konfigurierbar)	Konfiguration vo	n 1 60 s möglich (0 = ausgeschaltet)	
Werkskonfiguration			
Sensor	1 Sensor		
Schaltungsart	3-Leiter-Schaltung		
Messbereich	0 150 °C		
Dämpfung	Ausgeschaltet		
Ausgangsgrenzen	Untere Grenze	3,8 mA	
	Obere Grenze	20,5 mA	
Stromwert für Signalisierung	Zusteuernd	< 3,6 mA (3,5 mA)	
Kommunikation			
Kommunikationsprotokoll	HART®-Protokoll Rev. 5 1) inklusive Burstmodus, Multidrop		
	→ weitere Informationen siehe Seite 14		
Konfigurationssoftware	WIKA_T32		
	→ kostenloser Download unter www.wika.de		

Ausgangssignal			
Konfiguration	→ Anschlussbeispiel siehe Seite 15		
Anwenderlinearisierung	Kundenspezifische Sensork Sensortypen können so ger Anzahl der Stützstellen: min		
Sensorfunktionalität beim Anschluss von 2 Sensoren (Doppelsensor)	Transmitter kann unterhalb dieser Grenzwerte konfiguriert werden. Dies ist aber aufgrund von Genauigkeitsverlusten nicht zu empfehlen.		
	Sensor 1, Sensor 2 redundant	2 1. Fällt Sensor 1 aus wird der Prozesswert von Sensor 2 aus	
	Mittelwert	Sensor 1	gangssignal 4 20 mA liefert den Mittelwert bezogen auf und Sensor 2. Fällt ein Sensor aus, wird der Prozesswert rfreien Sensors ausgegeben.
	Minimalwert	Sensor 1	gangssignal 4 20 mA liefert den Minimalwert bezogen auf und Sensor 2. Fällt ein Sensor aus, wird der Prozesswert rfreien Sensors ausgegeben.
	Maximalwert	Sensor 1	gangssignal 4 20 mA liefert den Maximalwert bezogen auf und Sensor 2. Fällt ein Sensor aus, wird der Prozesswert rfreien Sensors ausgegeben.
	Differenz ²⁾	schen Se	gangssignal 4 20 mA liefert die Differenz zwi- ensor 1 und Sensor 2. Fällt ein Sensor aus, wird eine nalisierung aktiviert.
Überwachungsfunktionen			
Prüfstrom zur Sensorüberwachung 3)	Nom. 20 µA wäh	nrend Prüfz	ryklus, sonst 0 μA
Überwachung NAMUR NE89 (Zulei-	Widerstandsthermometer (Pt100, 4-Leiter)		$R_{L1} + R_{L4} > 100 \Omega$ mit Hysterese 5 Ω
tungswiderstandsüberwachung)			$R_{L2} + R_{L3} > 100 \Omega$ mit Hysterese 5Ω
	Thermoelement		$R_{L1} + R_{L4} + R_{Thermoelement} > 10 \text{ k}\Omega \text{ mit Hysterese } 100 \Omega$
	3-Leiter		Überwachung der Widerstandsdifferenz zwischen Leitung 3 und 4; bei einer Differenz von > 0,5 Ω zwischen Leitung 3 und 4 wird ein Fehler signalisiert
Fühlerbruchüberwachung	Immer aktiv		
Fühlerkurzschlussüberwachung	Aktiv (nur bei Wi	iderstandst	thermometern)
Selbstüberwachung	Erfolgt permane litätsprüfungen	nt, z.B.RA	M/ROM Test, logische Programmlaufkontrolle und Plausibi-
Messbereichsüberwachung	Überwachung de Standard: deakt	-	ellten Messbereiches auf Über-/Unterschreitung
Überwachungsfunktionen beim Anschluss von 2 Sensoren (Doppelsensor)	Redundanz		Bei einem Sensorfehler (Fühlerbruch, Leitungswiderstand zu hoch oder außerhalb des Sensormessbereiches) bei einem von beiden Sensoren, basiert der Prozesswert nur auf dem fehlerfreien Sensor. Ist der Fehler behoben, basiert der Prozesswert wieder auf beiden Sensoren, bzw. auf Sensor 1.
	Alterungsüberwi (Sensor-Drift-Üb chung)		Es wird eine Fehlersignalisierung am Ausgang initialisiert, wenn der Betrag der Temperaturdifferenz zwischen Sensor 1 und Sensor 2 größer wird als ein vom Anwender wählbarer Wert. Diese Überwachung führt nur dann zur Signalisierung, wenn zwei gültige Sensorwerte ermittelt werden konnten und die Temperaturdifferenz größer als der gewählte Grenzwert ist. (Nicht für die Sensorfunktionalität "Differenz" wählbar, da dort das Ausgangssignal bereits den Differenzwert beschreibt).
Spannungsversorgung			
Hilfsenergie U _B	DC 10,5 42 V ⁴⁾ Achtung: Eingeschränkte H (siehe "Sicherheitstechnisc		dilfsenergiebereiche bei explosionsgeschützter Ausführung che Kennwerte")


Ausgangssignal	
Zeitverhalten	
Anstiegszeit t ₉₀	Ca. 0,8 s
Einschaltzeit (Zeit bis zum ersten Messwert)	Max. 15 s
Aufwärmzeit	Nach ca. 5 Minuten werden die im Datenblatt angegebenen technischen Daten (Genauigkeiten) erreicht

¹⁾ Optional: Rev. 7

 ⁴⁾ Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde R_A ≤ (U_B - 10,5 V) / 0,023 A mit R_A in Ω und U_B in V (ohne HART[®])
Beim Einschalten ist ein Anstieg der Hilfsenergie von 2 V/s notwendig, andernfalls verbleibt der Temperaturtransmitter im sicheren Zustand bei 3,5 mA.

Elektrische Anschlüsse			
Aderquerschnitt			
T32.1S Kopfversion	Massiver Draht	0,14 2,5 mm ² (24 14 AWG)	
	Litze mit Aderendhülse	0,14 1,5 mm ² (24 16 AWG)	
T32.3S Schienenversion	Massiver Draht	0,14 2,5 mm ² (24 14 AWG)	
	Litze mit Aderendhülse	0,14 2,5 mm ² (24 14 AWG)	
Leitungswiderstand			
Bei Widerstandssensoren	50 Ω je Leiter, 3-/4-Leiteranschluss		
Bei Thermoelemente	5 kΩ je Leiter		
Isolationsspannung (Eingang zu Analogausgang)	AC 1.200 V, (50 Hz/60 Hz); 1 s		

Belegung der Anschlussklemmen

²⁾ Diese Betriebsart ist bei Option SIL (T32.xS.xxx-S) nicht zulässig.

³⁾ Nur für Thermoelement

Werkstoffe	
Nicht-messstoffberührte Teile	
T32.1S Kopfversion	Kunststoff, PBT, glasfaserverstärkt
T32.3S Schienenversion	Kunststoff

Einsatzbedingungen	
Umgebungstemperatur	-60 ¹⁾ / -50 ²⁾ / -40 +85 °C
Lagertemperatur	-60 ¹⁾ / -50 ²⁾ / -40 +85 °C
Relative Feuchte, Betauung	
T32.1S Kopfversion (nach IEC 60068-2-38: 1974)	Prüfung max. Temperaturwechsel 65 °C und -10 °C, 93 % ± 3 % r. F.
T32.3S Schienenversion (nach IEC 60068-2-30: 2005)	Prüfung max. Temperatur 55 °C, 95 % r. F.
Klimaklasse nach IEC 654-1: 1993	Cx (-40 +85 °C, 5 95 % r. F.)
Salznebel nach IEC 60068-2-52	Schärfegrad 1
Vibrationsbeständigkeit nach IEC 60068-2-6: 2007	Prüfung Fc: 10 2.000 Hz; 10 g, Amplitude 0,75 mm
Schockfestigkeit nach IEC 68-2-27: 1987	Prüfung Ea: Beschleunigung Typ I 30 g und Type II 100 g
Freifalltest in Anlehnung an IEC 60721-3-2: 1997	Fallhöhe 1.500 mm
Schutzart des Gesamtgerätes (nach IEC/EN 60529)	
T32.1S Kopfversion	IP00 (Elektronik komplett vergossen)
T32.3S Schienenversion	IP20
Lebensdauer	Max. Gebrauchsdauer von 20 Jahren (in Anlehnung an ISO 13849-1)

¹⁾ Sonderausführung auf Anfrage (nur mit ausgewählten Zulassungen verfügbar), nicht für Schienenversion T32.3S, nicht für SIL-Ausführung 2) Sonderausführung, nicht für Schienenversion T32.3S

Zulassungen

Im Lieferumfang enthaltene Zulassungen

Logo	Beschreibung	Land
CE	EU-Konformitätserklärung	Europäische Union
	EMV-Richtlinie ¹⁾ EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich)	
	RoHS-Richtlinie	

¹⁾ Während der Störbeeinflussung eine erhöhte Messabweichung von bis zu 1 % berücksichtigen.

Optionale Zulassungen

Logo	Beschreibung	Land
€ x	EU-Konformitätserklärung ATEX-Richtlinie Explosionsgefährdete Bereiche	Europäische Union
IEC IECEX	IECEx Explosionsgefährdete Bereiche	International
APPROVED	FM Explosionsgefährdete Bereiche	USA
(F)	CSA Explosionsgefährdete Bereiche	Kanada
EH[Ex	EAC	Eurasische Wirtschaftsge-
	EMV-Richtlinie	meinschaft
	Explosionsgefährdete Bereiche	
-	MTSCHS Genehmigung zur Inbetriebnahme	Kasachstan

Logo	Beschreibung	Land
•	UkrSEPRO Metrologie, Messtechnik	Ukraine
	Uzstandard Metrologie, Messtechnik	Usbekistan
иметко	INMETRO Explosionsgefährdete Bereiche	Brasilien
Ex MEPS\	NEPSI Explosionsgefährdete Bereiche	China
© s	KCs - KOSHA Explosionsgefährdete Bereiche	Südkorea

Herstellerinformationen und Bescheinigungen

Logo	Beschreibung
SIL	SIL 2 (Option) Funktionale Sicherheit
-	China RoHS-Richtlinie
NAMUR	NAMUR ■ EMV nach NAMUR NE21 ■ Signalisierung nach NAMUR NE43 ■ Sensorbruchüberwachung nach NAMUR NE89

Zertifikate/Zeugnisse (Option)

Zertifikate/Zeugnisse		
Zeugnisse	2.2-Werkszeugnis3.1-Abnahmeprüfzeugnis	
Kalibrierung	DAkkS-Kalibrierzertifikat	

Zulassungen und Zertifikate siehe Internetseite

Sicherheitstechnische Kennwerte (explosionsgeschützte Ausführung)

T32.1S.0IS, T32.3S.0IS

Zulassung ATEX, IEC

Ex-Kennzeichnung	BVS 08 ATEX E	019 X		
<u> </u>	BVS 08.0018X (IECEx-Zertifikat)			
T32.1S Kopfversion	Zonen 0, 1 II 1G Ex ia IIC T4/T5/T6 Ga			
	Zonen 20, 21	II 1D Ex ia IIIC T135 °C	C Da	
T32.3S Schienenversion	Zonen 0, 1	II 2(1)G Ex ia [ia Ga] II	C T4/T5/T6 Gb	
	Zonen 20, 21	II 2(1)D Ex ia [ia Da] II	IC T135 °C Db	
Anschlusswerte / Eigensicherer Speise- und Signalstr	romkreis (4 20	mA-Stromschleife)		
Klemmen	+/-			
Hilfsenergie U _B 1)	DC 10,5 30 V			
Maximale Spannung U _i	DC 30 V			
Maximaler Strom I _i	130 mA			
Maximale Leistung P _i (Gas)	800 mW			
Maximale Leistung P _i (Staub)	750/650/550 m ³	W		
Innere wirksame Kapazität C _i	7,8 nF			
Innere wirksame Induktivität L _i	Vernachlässigbar			
Anschlusswerte Sensorstromkreis				
Klemmen	1 - 4			
Maximale Spannung U ₀	DC 6,5 V			
Maximaler Strom I ₀	9,3 mA			
Maximale Leistung P ₀	15,2 mW			
Innere wirksame Kapazität C _i	208 nF			
Innere wirksame Induktivität L _i	Vernachlässigb	ar		
Maximale externe Kapazität C ₀	Gas, Kategorie	1 und 2, Gruppe IIC	24 μF ²⁾	
	Gas, Kategorie	1 und 2, Gruppe IIA	1.000 μF ²⁾	
	Kategorie 1 uno	I 2, Gas IIB, Staub IIIC	570 μF ²⁾	
Maximale externe Induktivität L ₀	Gas, Kategorie	1 und 2, Gruppe IIC	365 mH	
	Gas, Kategorie 1 und 2, Gruppe IIA 3.288 mH			
	Kategorie 1 und	I 2, Gas IIB, Staub IIIC	1.644 mH	
$\label{eq:maximales} \mbox{Maximales Induktivitäts-/Widerstandsverhältnis} \ \mbox{L}_0/\mbox{R}_0$	Gas, Kategorie 1 und 2, Gruppe IIC		1,44 mH/Ω	
	Gas, Kategorie	1 und 2, Gruppe IIA	11,5 μΗ/Ω	
	Kategorie 1 uno	2, Gas IIB, Staub IIIC	$5,75~\text{mH}/\Omega$	
Kennlinie	Linear			

Anwendung	Umgebungstemperaturbereich	Temperaturklasse	Leistung P _i
Gruppe II	-50 ³⁾ / -40 +85 °C	T4	800 mW
Gas, Kategorie 1 und 2	-50 ³⁾ / -40 +75 °C	T5	800 mW
	-50 ³⁾ / -40 +60 °C	T6	800 mW
Gruppe IIIC	-50 ³⁾ / -40 +40 °C	N/A	750 mW
Staub, Kategorie 1 + 2	-50 ³⁾ / -40 +70 °C	N/A	650 mW
	-50 ³⁾ / -40 +85 °C	N/A	550 mW

¹⁾ Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde R_A ≤ (U_B - 10,5 V) / 0,023 A mit R_A in Ω und U_B in V (ohne HART®)

Beim Einschalten ist ein Anstieg der Hilfsenergie von 2 V/s notwendig, andernfalls verbleibt der Temperaturtransmitter im sicheren Zustand bei 3,5 mA.

C_i bereits berücksichtigt
 Sonderausführung, nicht für Schienenversion T32.3S

Zulassung CSA und FM

CSA	FM
70038032	3034620 / FM17US0333X
Klasse I, Zone 0, Ex ia IIC Klasse I, Zone 0, AEx ia IIC	Klasse I, Zone 0, AEx ia IIC Klasse I, Division 1, Gruppe A, B, C, D (nur FM-Zulassung AEx ia)
Klasse I, Division 2, Gruppe A, B, C, D	Klasse I, Division 2, Gruppe A, B, C, D Klasse I, Division 2, IIC
omkreis (4 20 mA-Stromschleife)	
+/-	+/-
DC 10,5 30 V	DC 10,5 30 V
DC 30 V	DC 30 V
130 mA	130 mA
800 mW	800 mW
750/650/550 mW	-
7,8 nF	7,8 nF
100 μΗ	100 μΗ
-	1 - 4
-	6,5 V
-	9,3 mA
-	15,2 mW
-	24 μF
-	365 μΗ
	70038032 Klasse I, Zone 0, Ex ia IIC Klasse I, Zone 0, AEx ia IIC Klasse I, Division 2, Gruppe A, B, C, D omkreis (4 20 mA-Stromschleife) + / - DC 10,5 30 V DC 30 V 130 mA 800 mW 750/650/550 mW 7,8 nF 100 μH

Anwendung	Umgebungstemperaturbereich		Temperaturklasse	Leistung P _i	
	CSA	FM			
Klasse I	-50 ²⁾ / -40 +85 °C	-50 ²⁾ / -40 +85 °C	T4	800 mW	
	-50 ²⁾ / -40 +75 °C	-50 ²⁾ / -40 +75 °C	T5	800 mW	
	-50 ²⁾ / -40 +60 °C	-50 ²⁾ / -40 +60 °C	T6	800 mW	
Klasse IIIC	-50 ²⁾ / -40 +40 °C	-	-	750 mW	
	-50 ²⁾ / -40 +75 °C	-	-	650 mW	
	-50 ²⁾ / -40 +100 °C	-	-	550 mW	

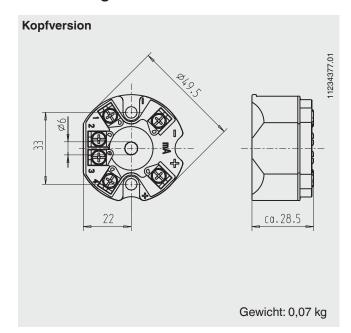
¹⁾ Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde R_A ≤ (U_B - 10,5 V) / 0,023 A mit R_A in Ω und U_B in V (ohne HART®)
Beim Einschalten ist ein Anstieg der Hilfsenergie von 2 V/s notwendig, andernfalls verbleibt der Temperaturtransmitter im sicheren Zustand bei 3,5 mA.
2) Sonderausführung, nicht für Schienenversion T32.3S

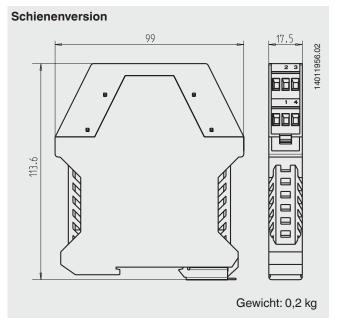
Sicherheitstechnische Kennwerte (Ex)				
		RU C-DE.ΓБ08.B.02485, eigensicheres Betriebsmittel		
		ia IIC T4/T5/T6 ib IIC T4/T5/T6 ic IIC T4/T5/T6		
		A20 Ta 120 °C A21 Ta 120 °C		
Anschlusswerte / Eigensicherer Speise- und Signalstr	omkre	eis (4 20 mA-Stromschleife)		
Klemmen	+/-			
Hilfsenergie U _B 1)	DC 10,5 30 V			
Maximale Spannung V _{max}	DC 30 V			
Maximaler Strom I _{max}	130 mA			
Maximale Leistung P _i	800 mW			
Innere wirksame Kapazität C _i	7,8 nF			
Innere wirksame Induktivität L _i	100 μΗ			
Anschlusswerte Sensorstromkreis				
Klemmen	1 - 4			
Maximale Spannung V _{oc}	6,5 V			
Maximaler Strom I _{sc}	9,3 mA			
Maximale Leistung P _{max}	15,2 mW			
Maximale externe Kapazität C _a	IIC	24 μF		
	IIB	570 μF		
Maximale externe Induktivität L _a	IIC	365 μΗ		
	IIB	1.644 μΗ		

Anwendung	Umgebungstemperaturbereich	Temperaturklasse
Klasse IIC	-60 ²⁾ / -50 ³⁾ / -40 +85 °C	T4
Klasse IIB	-60 ²⁾ / -50 ³⁾ / -40 +75 °C	T5
	-60 ²⁾ / -50 ³⁾ / -40 +60 °C	T6

Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde R_A ≤ (U_B - 10,5 V) / 0,023 A mit R_A in Ω und U_B in V (ohne HART[®])
 Beim Einschalten ist ein Anstieg der Hilfsenergie von 2 V/s notwendig, andernfalls verbleibt der Temperaturtransmitter im sicheren Zustand bei 3,5 mA.
 Sonderausführung auf Anfrage (nur mit ausgewählten Zulassungen verfügbar), nicht für Schienenversion T32.3S, nicht für SlL-Ausführung
 Sonderausführung, nicht für Schienenversion T32.3S

T32.1S.0IC, T32.3S.0IC


Zulassung ATEX, IEC


Sicherheitstechnische Kennwerte (Ex)			
Ex-Kennzeichnung	II 3G Ex ic IIC T4/T5/T6 Gc		
Anschlusswerte / Eigensicherer Speise- und Signalstr	omkreis (4 20 mA	-Stromschleife)	
Klemmen	+/-		
Hilfsenergie U _B 1)	DC 10,5 30 V		
Maximale Spannung U _i	DC 30 V		
Maximaler Strom I _i	130 mA		
Maximale Leistung P _i	800 mW		
Innere wirksame Kapazität C _i	7,8 nF		
Innere wirksame Induktivität L _i	Vernachlässigbar		
Anschlusswerte Sensorstromkreis			
Klemmen	1 - 4		
Maximale Spannung U ₀	DC 6,5 V		
Maximaler Strom I ₀	9,3 mA		
Maximale Leistung P ₀	15,2 mW		
Innere wirksame Kapazität C _i	208 nF		
Innere wirksame Induktivität L _i	Vernachlässigbar		
Maximale externe Kapazität C_0	Gas IIC	$\leq 325 \mu F^{(3)}$	
	Gas IIA	$\leq 1.000 \mu F^{3)}$	
	Gas IIB, Staub IIIC	\leq 570 μ F ³⁾	
Maximale externe Induktivität \mathbf{L}_0	Gas IIC	≤ 821 mH	
	Gas IIA	≤ 7.399 mH	
	Gas IIB, Staub IIIC	≤ 3.699 mH	
Maximales Induktivitäts-/Widerstandsverhältnis L_0/R_0	Gas IIC	\leq 3,23 mH/ Ω	
	Gas IIA	\leq 25,8 mH/ Ω	
	Gas IIB, Staub IIIC	\leq 12,9 mH/ Ω	
Kennlinie	Linear		

Anwendung	Umgebungstemperaturbereich	Temperaturklasse	Leistung P _i
Gruppe II	-50 ²⁾ / -40 +85 °C	T4	800 mW
Gas, Kategorie 1 und 2	-50 ²⁾ / -40 +75 °C	T5	800 mW
	-50 ²⁾ / -40 +60 °C	T6	800 mW

¹⁾ Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde R_A ≤ (U_B - 10,5 V) / 0,023 A mit R_A in Ω und U_B in V (ohne HART[®])
Beim Einschalten ist ein Anstieg der Hilfsenergie von 2 V/s notwendig, andernfalls verbleibt der Temperaturtransmitter im sicheren Zustand bei 3,5 mA.
2) Sonderausführung, nicht für Schienenversion T32.3S
3) Ci bereits berücksichtigt

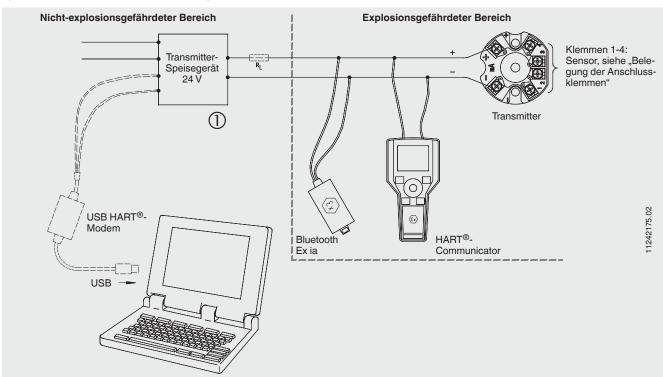
Abmessungen in mm

Kommunikation

HART®-Protokoll Rev. 5 1) inklusive Burstmodus, Multidrop

Interoperabilität, d.h. die Zusammenarbeit verschiedener Komponenten unterschiedlichster Hersteller, ist bei HART®-Geräten eine zwingende Notwendigkeit. Der T32 Transmitter kann mit nahezu jedem offenen Soft- und Hardwaretool konfiguriert werden; u. a. mit:

- 1. Komfortabler WIKA-Konfigurationssoftware, kostenloser Download unter www.wika.de
- HART®-Communicator FC375, FC475, MFC4150, MFC5150, Trex:
 T32 Device Description (device object file) integriert bzw. bei alten Ausführungen nachrüstbar
- 3. Asset-Management-Systemen
 - 3.1 AMS: T32_DD vollständig integriert bzw. bei alten Versionen nachrüstbar
 - 3.2 Simatic PDM: T32_EDD vollständig integriert ab Version 5.1, nachrüstbar bei Version 5.0.2
 - 3.3 Smart Vision: DTM nachrüstbar nach FDT 1.2 Standard ab SV Version 4
 - 3.4 PACTware: DTM vollständig integriert bzw. nachrüstbar sowie mit allen Rahmenapplikationen mit FDT 1.2 Schnittstelle
 - 3.5 Field Mate: DTM nachrüstbar


Achtung:

Für die direkte Kommunikation über die serielle Schnittstelle eines PCs/Notebooks wird ein HART®-Modem (siehe "Zubehör") benötigt. Generell gilt: Parameter, die im Umfang der universellen HART®-Kommandos definiert sind (z. B. der Messbereich) können grundsätzlich mit allen HART®-Konfigurationstools bearbeitet werden.

1) Optional: Rev. 7

Konfiguration

Typischer Anschluss im explosionsgefährdeten Bereich

Typischer Anschluss im nicht-explosionsgefährdeten Bereich

RL = Lastwiderstand für HART®-Kommunikation RL min. 250 Ω , max. 1.100 Ω

Falls RL im jeweiligen Stromkreis < 250 Ω ist, muss RL durch Zuschalten externer Widerstände auf min. 250 Ω erhöht werden.

Im Fehlerfall kann es bei sehr hohen Umgebungstemperaturen, zusteuernder Fehlersignalisierung und ungünstiger Bürde vereinzelt zu Kommunikationsbeeinträchtigungen kommen.

Zubehör

DIH50-F mit Feldgehäuse, Adapter

Тур		Beschreibung	Bestellnummer
o o o o o	DIH50, DIH52 mit Feldgehäuse	Anzeigemodul DIH50 ohne separate Hilfsenergieversorgung, automatischer Abgleich der Anzeige bei Änderung des Messbereiches und der Einheit durch Überwachung der HART®-Kommunikation, 5-stelliges LC-Display, 20-Segment Bargraphanzeige, Anzeige in 10°-Schritten drehbar, mit Explosionsschutz II 1G Ex ia IIC; siehe Datenblatt AC 80.10 Werkstoff: Aluminium / CrNi-Stahl Abmessungen: 150 x 127 x 138 mm	Auf Anfrage
	Adapter	Passend zu TS 35 nach DIN EN 60715 (DIN EN 50022) bzw. TS 32 nach DIN EN 50035 Werkstoff: Kunststoff / CrNi-Stahl Abmessungen: 60 x 20 x 41,6 mm	3593789
	Adapter	Passend zu TS 35 nach DIN EN 60715 (DIN EN 50022) Werkstoff: Stahl verzinnt Abmessungen: 49 x 8 x 14 mm	3619851
4	Magnetischer Schnellkontakt, Typ magWIK	Ersatz für Krokodil- und HART®-Klemmen Schnelle, sichere und feste Kontaktierung Für alle Konfigurations- und Kalibrierprozesse	14026893

HART®-Modem

Тур		Beschreibung	Bestellnummer	
Programmiereinhe	Programmiereinheit, Typ PU-H			
	VIATOR® HART® USB	HART®-Modem für USB-Schnittstelle	11025166	
	VIATOR [®] HART [®] USB PowerXpress [™]	HART®-Modem für USB-Schnittstelle	14133234	
	VIATOR® HART® RS-232	HART®-Modem für RS-232-Schnittstelle	7957522	
	VIATOR® HART® Bluetooth® Ex	HART®-Modem für Bluetooth-Schnittstelle, Ex	11364254	

Best	ella	nq	ab	en

Typ / Explosionsschutz / SIL-Angaben / Konfiguration / Zulässige Umgebungstemperatur / Zeugnisse / Optionen

© 04/2008 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.
Bei unterschiedlicher Auslegung des übersetzten und des englischen Datenblatts ist der englische Wortlaut maßgebend.

WIKA-Datenblatt TE 32.04 · 12/2023

Seite 17 von 17

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 info@wika.de www.wika.de