Trasmettitore di temperatura digitale Con protocollo HART®, per montaggio in testina e su barra Modello T38

Scheda tecnica WIKA TE 38.01

Per le omologazioni, vedere pagina13

Applicazioni

- Industria di processo
- Costruzione di macchine e impianti

Caratteristiche distintive

- Versione SIL certificata TÜV secondo IEC 61508 (opzione)
- Funzionamento in applicazioni di sicurezza fino a SIL 2/SIL 3
- Configurabile con quasi tutti gli strumenti di configurazione
- Universale per il collegamento di 1 o 2 sensori: termoresistenza (fino a 2 x 3 fili), termocoppia, sensore di tensione, potenziometro, catene Reed ed altri
- Segnalazione conforme a NAMUR NE43, rilevamento della rottura del sensore conforme a NE89, EMC conforme a NE21, automonitoraggio e diagnostica degli strumenti di campo in conformità con la norma NE107

Questi trasmettitori di temperatura sono progettati per un impiego universale nell'industria. Offrono un'elevata accuratezza grazie all'accoppiamento sensore-trasmettitore, massima affidabilità ed eccellente protezione contro le influenze elettromagnetiche. Tramite il protocollo HART®, i trasmettitori di temperatura T38 possono essere configurati (interoperabilità) con una vasta gamma di strumenti di configurazione non proprietari. Inoltre, è possibile parametrizzare in modo molto semplice, rapido e con una chiara panoramica i trasmettitori di temperatura T38, tramite il software di configurazione WIKAsoft-TT e l'unità di programmazione modello PU-548.

Oltre alla selezione del tipo di sensore e del campo di misura, il software consente la memorizzazione delle operazioni di segnalazione degli errori, dello smorzamento, delle descrizioni di diversi punti di misura e della regolazione del processo.

Fig. a sinistra: versione per montaggio in testina, modello T38.H

Fig. a destra: versione per montaggio su guida DIN, modello T38.R

I trasmettitori T38 offrono un'ampia gamma di combinazioni di connessione dei sensori.

Attraverso la configurazione della funzione di ridondanza (con sensore doppio), in caso di guasto di un sensore il trasmettitore commuta automaticamente sul sensore funzionante. Vi è inoltre la possibilità di attivare il rilevamento di deriva del sensore. Con il WIKA True Drift Detection, i sensori possono essere monitorati in continuo, e le posizioni di misura errate possono essere identificate immediatamente.

Inoltre, i trasmettitori T38 presentano numerose funzionalità di supervisione sofisticate. Inoltre, sono integrate funzioni diagnostiche estese in conformità alla norma NE107 e vengono eseguite ampie funzioni di autocontrollo ciclico, che contribuiscono all'elevato livello di sicurezza del sistema.

Scheda tecnica WIKA TE 38.01 · 01/2025

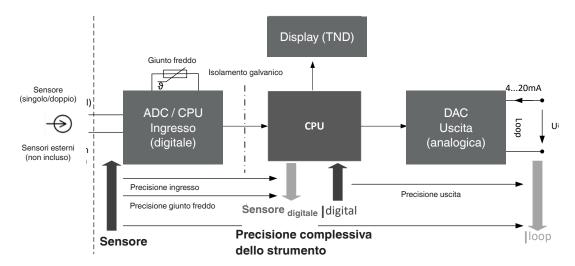
Pagina 1 di 20

Specifiche tecniche

Elemento di misura				
	Tipo di sensore	Max. campo di misura configurabile	Standard	Span di misura minimo (MS) ¹⁾
Sensore di resistenza	Pt100	-200 +850 °C [-328 +1.562 °F]	IEC 60751	10 K
	Pt1000	-200 +850 °C [-328 +1.562 °F]	IEC 60751	
	CvD	-200 +850 °C [-328 +1.562 °F]	n.a.	
	Pt1000 Esecuzione criogenica ²⁾	-260 +200 °C [-436 +392 °F]	Interno + IEC 60751	
	JPt100	-200 +500 °C [-328 +932 °F]	JIS C1606:1989	
	JPt1000	-200 +500 °C [-328 +932 °F]	JIS C1606:1989	
	Ni100	-60 +250 °C [-76 +482 °F]	DIN 43760:1987	
	Termoresistenza 2)	0 4.100 Ω	n.a.	20 Ω
Potenziometro 3)	Potenziometro ²⁾	0 100 % n.a. 1		10 %
Sensore FLR 3)	Catene reed	e reed 0 100 %		10 %
Tipo termocoppia	J	-210 +1.200 °C [-346 +2.192 °F]	IEC 60584-1	50 K
	K	-270 +1.300 °C [-454 +2.372 °F]	IEC 60584-1	
	L (DIN)	-200 +900 °C [-328 +1.652 °F]	DIN 43710:1985	
	L (GOST)	-200 +800 °C [-328 +1.472 °F]	GOST R 8.585 - 2001	
	E	-200 +1.000 °C [-328 +1.832 °F]	IEC 60584-1	
	E (CRYO)	-270 +250 °C [-454 +482 °F]		
	N	-270 +1.300 °C [-454 + 2.372 °F]	IEC 60584-1	
	Т	-270 +400 °C [-454 +752 °F]	IEC 60584-1	
	U	-200 +600 °C [-328 +1.112 °F]	DIN 43710:1985	
	R	-50 +1.768 °C [-58 +3.214 °F]	IEC 60584-1	150 K
	S	-50 +1.768 °C [-58 +3.214 °F]	IEC 60584-1	
	В	-50 +1.820 °C [-58 +3.308 °F]	IEC 60584-1	200 K
	С	-50 +2.315 °C [-58 +4.199 °F]	IEC 60584-1	150 K
	A	-50 +2.500 °C [-58 +4.532 °F]	IEC 60584-1	
Sensore di tensione	Sensore Vm ²⁾	-500 +1.000 mV	-	10 mV

¹⁾ Il trasmettitore può essere configurato al di sotto di questi valori limite, ma non è raccomandato a causa della perdita di precisione.

²⁾ Questo modo operativo non è consentito per l'opzione SIL. 3) R_{total} : 1 ... 35 k Ω


Ulteriori dettagli relativi a: Elemento di misura			
Corrente di misura durante la misurazione	Max. 0,33 mA (Pt100)		
Metodi di collegamento			
Termoresistenza (RTD)	 1 sensore in collegamento a 2/3/4 fili 2 sensori in collegamento a 2/3 fili 		
	→ Per ulteriori informazioni vedere "Configurazione della morsettiera"		
Termocoppia (TC), FLR, potenziometro, sensore di tensione	■ 1 sensore ■ 2 sensori		
	→ Per ulteriori informazioni vedere "Configurazione della morsettiera"		
Sensore di resistenza	 1 sensore in collegamento a 2/3/4 fili 2 sensori in collegamento a 2/3 fili 		
Termoresistenza (RTD) e termocoppia (TC)	Sensore 1 in collegamento a 4 filiSensore 2 termocoppia		
Termocoppia (TC) e termoresistenza (RTD)	Sensore 1 termocoppiaSensore 2 in collegamento a 2/3 fili		
Compensazione del giunto freddo, configurabile	 Compensazione interna Esterno con Pt100 Valore fisso con specifica fissa della temperatura Disattivato 		

Controllo versione conforme a NAMUR NE53

Versione		DD corrispondente (descrizione dispositivo)
1.0.1	1	Dev v1, DDv1

Precisione complessiva dello strumento

Le specifiche di precisione relative al prodotto fanno riferimento allo strumento complessivo. Per determinare l'errore complessivo devono essere considerati tutti i tipi di errore possibili, che sono sintetizzati nella tabella seguente.

Specifiche della precisione					
Ingresso e uscita	conforme a IEC 62828				
Tipo di sensore di ingresso	Coefficiente medio di temperatura per ogni 10 K di variazione della temperatura ambiente nel campo -40 +85°C [-40 +185 °F]	Deviazione di misura alle condizioni di riferimento ¹⁾ in conformità a EN IEC 62828, NE 145	Influenza della resistenza del cavo	Stabilità a lungo termine dopo 1 anno alle condizioni di riferimento ¹⁾	
Pt100 / Pt1000 ²⁾ / JPt100 / JPt1000 / Ni100 Pt1000 in esecuzione criogenica	±(0,06 K + 0,015 % VM)	-200 °C [-328 °F] ≤ VM ≤ +200 °C [+392 °F] : ±0,10 K VM > +200 °C [+392 °F]: ±(0,1 K + 0,01% VM-200 K) -260200 ±(0,1 K + 0,6 % VM+200 K) -200 +200 ± 0,1 K	4 fili: Nessun effetto $(0 50 \Omega)$ per conduttore) 3 fili: $\pm 0.02 \Omega / 10 \Omega$ $(0 50 \Omega)$ per conduttore)	±60 mΩ o 0,05 % di VM, si applicano valori maggiori	
Sensore di resistenza	±(0,01 Ω + 0,01 % VM)	4 fili: $0 \text{ °C} \leq \text{VM} \leq +250 \text{ °C} \text{ [482 °F]:} \\ \pm 0.05 \Omega \\ \text{VM} > +250 \text{ °C} \text{ [482 °F]:} \pm \text{(VM * 0.02%)} \Omega$ 3 fili: $0 \text{ °C} \leq \text{VM} \leq +250 \text{ °C} \text{ [482 °F]:} \\ \pm 0.05 \Omega \\ \text{VM} > +250 \text{ °C} \text{ [482 °F]:} \pm \text{(VM * 0.02%)} \Omega$	2 fili: resistenza delle linee di alimentazione ³) 2 fili: resistenza delle linee di alimentazione ³) ≤ +250 °C [482 °F] 0 °C [482 °F]: ±(VM *		
Potenziometro	±(0,1 % VM)	Rparziale/Rtotale è max. ±0,5 %	-	-	
Sensore FLR	±(0,1 % VM)	$R_{parziale}/R_{totale}$ è max ±0,2% ⁴⁾	-	±(0,1 % VM)	
Termocoppie					
Tipo J (Fe-CuNi)	VM > -150 °C [-238 °F]: ±(0,07 K + 0,02% IVMI)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,3 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,3 K + 0,03 % VM)	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	

Specifiche della precisione

Ingresso e uscita	Ingresso e uscita conforme a IEC 62828				
Tipo di sensore di ingresso	Coefficiente medio di temperatura per ogni 10 K di variazione della temperatura ambiente nel campo -40 +85°C [-40 +185 °F]	Deviazione di misura alle condizioni di riferimento ¹⁾ in conformità a EN IEC 62828, NE 145	Influenza della resistenza del cavo	Stabilità a lungo termine dopo 1 anno alle condizioni di riferimento ¹⁾	
Tipo K (NiCr-Ni)	VM > -150 °C [-238 °F]: ±(0,1 K + 0,02% VMI)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,4 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,4 K + 0,04 % VM)	$6~\mu V/1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo L (DIN / Fe-CuNi)	VM > 0 °C [+32 °F]: ±(0,07 K + 0,015 % VM)	VM > 0 °C [+32 °F]: ±(0,3 K + 0,03 % VM)	$6~\mu V/1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo L (GOST / Fe- CuNi)	VM > -150 °C [-238 °F]: ±(0,1 K + 0,015% IMVI)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,3 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,3 K + 0,03 % VM)	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo E (NiCr-Cu)	VM > -150 °C [-238 °F]: ±(0,1 K + 0,015% IVMI)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,3 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,3 K + 0,03 % VM)	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo N (NiCrSi-NiSi)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,1 K + 0,05% VMI) VM > 0 °C [+32 °F]: ±(0,1 K + 0,02 % VM)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,5 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,5 K + 0,03 % VM)	$6~\mu V / 1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo T (Cu-CuNi)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,07 K + 0,04 % VM) VM > 0 °C [32 °F]: ±(0,07 K + 0,01 % VM)	-150 °C [-238 °F] < VM < 0 °C [+32 °F]: ±(0,4 K + 0,2% VM) VM > 0 °C [+32 °F]: ±(0,4 K + 0,01 % VM)	$6~\mu V / 1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo U (Cu-CuNi)	VM > 0 °C [32 °F]: ±(0,07 K + 0,01 % VM)	VM > 0 °C [32 °F]: ±(0,4 K + 0,01 % VM)	$6~\mu V/1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo R (PtRh-Pt)	VM > 50 °C [122 °F]: ±(0,3 K + 0,01% IVM - 400 KI]	50 °C [122 °F] < VM < 400 °C [752 °F]: ±(1,45 K + 0,12% VM - 400 K) VM > 400 °C [752 °F]: ±(1,45 K + 0,005% VM - 400 K]	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo S (PtRh-Pt)	VM > 50 °C [122 °F]: ±(0,3 K + 0,015% VM - 400 K]	50 °C [122 °F] < VM < 400 °C [752 °F]: ±(1,45 K + 0,12% IVM - 400 KI) VM > 400 °C [752 °F]: ±(1,45 K + 0,01% IVM - 400 KI]	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo B (PtRh-Pt)	450 °C [842 °F] < VM < 1.000 °C [1.832 °F]: ±(0,4 K + 0,02% VM - 1.000 K) VM > 1.000 °C: ±(0,4 K + 0,005% (VM - 1.000 K))	450 °C [842 °F] < VM < 1.000 °C [1.832 °F]: ±(1,7 K + 0,2% VM - 1.000 K) VM > 1.000 °C: ±1,7 K	$6~\mu V / 1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Tipo C (W5Re-W26Re)	0 °C [32 °F] < VM < 400 °C [752 °F]: ±0,25 K VM > 400 °C [752 °F]: ±(0,25 K + 0,05% (VM - 400 K))	0 °C [32 °F] < VM < 400 °C [752 °F] ±(0,85 K + 0,04% IVM - 400 KI) VM > 400 °C [752 °F] ±(0,85 K + 0,1% IVM - 400 KI)	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	

Specifiche della p	Specifiche della precisione				
Ingresso e uscita	Ingresso e uscita conforme a IEC 62828				
Tipo di sensore di ingresso	Coefficiente medio di temperatura per ogni 10 K di variazione della temperatura ambiente nel campo -40 +85°C [-40 +185 °F]	Deviazione di misura alle condizioni di riferimento ¹⁾ in conformità a EN IEC 62828, NE 145	Influenza della resistenza del cavo	Stabilità a lungo termine dopo 1 anno alle condizioni di riferimento ¹⁾	
Tipo A (W5Re-W20Re)	0 °C [32 °F] < VM < 400 °C [752 °F]: ± 0,25 K VM > 400 °C [752 °F] ±(0,25 K + 0,05% (MV - 400 K))	0 °C [32 °F] < VM < 400 °C [752 °F] ±(0,85 K + 0,04% VM - 400 K) VM > 400 °C [752 °F] ±(0,85 K + 0,1% VM - 400 K)	6 μV / 1.000 Ω	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Sensore mV	$\pm (2 \mu V + 0.02\% VM)$	$\pm (10 \mu\text{V} + 0.03\% \text{IVMI})$	$6~\mu V/1.000~\Omega$	±20 μV o 0,05 % di VM, si applicano valori maggiori	
Giunto freddo (solo con TC)	±0,1 K	±0,8 K	-	±0,2 K	
Uscita	±0,03% dello span di misura ⁵⁾	±0,03 % del campo di misura	-	±0,05% dello span	

¹⁾ Condizioni di riferimento: temperatura: 23 °C [73 °F] ±3 K, umidità relativa: 50 - 70%, pressione ambiente: 86 - 106 kPa

Intervallo di misura = fine configurata del campo di misura - avvio configurato del campo di misura

Esempio di calcolo

Pt100/4 fili/campo di misura 0 150°C/temperatura ambiente 33°C				
Ingresso Pt100, VM < 200 °C	±0,100 K			
Uscita ±(0,03% di 150 K)	±0,045 K			
TC _{ingresso} ±(0,06 K + 0,015 % di 150 K)	±0,083 K			
TC _{uscita} ±(0,03 % di 150 K)	±0,045 K			
Deviazione di misura (tipico) √ingresso² + uscita² + ingressoTC² + uscitaTC²	±0,145 K			
Deviazione di misura (massimo) (ingresso + uscita + TC _{ingresso} + TC _{uscita})	±0,273 K			

Termocoppia tipo K/campo di misura 0 400°C/compensazione interna (giunto freddo)/temperatura ambiente 23°C				
Ingresso tipo K, 0 °C < VM < 1.300 °C $\pm (0.4 \text{ K} + 0.04 \% \text{ di } 400 \text{ K})$	±0,56 K			
Giunto freddo ±0,8 K	±0,80 K			
Uscita ±(0,03% di 400 K)	±0,12 K			
Deviazione di misura (tipico) √ingresso² + giunto freddo² + uscita²	±0,98 K			
Deviazione di misura (massimo) (ingresso + giunto freddo + uscita)	±1,48 K			

²⁾ Sensore doppio solo fino a 450 °C [842 °F] entro la specifica.

3) Il valore di resistenza specificato del filo del sensore può essere sottratto dalla resistenza misurata del sensore. Sensore doppio: configurabile per ogni sensore separatamente.

⁴⁾ Per sensori doppi: può essere preso il valore doppio.

⁵⁾ Solo per il campo -40 ... +85 °C [-40 ... +185 °F], inoltre l'errore del coefficiente di temperatura raddoppia a ±0,06% dello span di misura.

Uscita analogica (configurabile)	■ 4 20 mA, 2			
	■ 20 4 mA, 2	2 fili		
Linearità alla temperatura	Per RTD	Lineare alla temperatura secondo IEC 60751, JIS C1606, DIN 4376		
	Per TC	Uscita lineare in temperatura conforme a IEC 60584, DIN 43710, GOST R 8.585 - 2001		
Carico R _A	Il carico consent	tito dipende dalla tensione di alimentazione del loop.		
Con HART®	$R_A \le (U_B - 10.5)$	$R_A \le (U_B - 10.5 \text{ V}) / 0.022 \text{ A con } R_A \text{ in } \Omega \text{ e } U_B \text{ in } V$		
Limiti di uscita (configurabili)				
Conforme a NAMUR NE43	Limite inferiore	3,8 mA		
	Limite superiore	20,5 mA		
Regolabile su specifica del cliente	Limite inferiore	3,8 4,0 mA		
	Limite superiore	20,0 20,5 mA		
Simulazione		li simulazione indipendente dal segnale di ingresso, valore di onfigurabile da 3,5 mA a 22,0 mA		
Valore di corrente per segnalazione				
Conforme a NAMUR NE43	Scalabile verso il basso	< 3,6 mA (3,5 mA) ¹⁾		
	Scalabile verso l'alto	> 20,5 mA (21,5 mA) ¹⁾		
Campo di regolazione	Scalabile verso il basso	3,5 3,6 mA		
	Scalabile verso l'alto	21,0 22,0 mA		
PV, valore primario (valore misurato HART® digitale)	Segnalazione su	ull'errore hardware e sensore tramite valore predefinito [±9,999]		
Smorzamento (configurabile)	Configurazione	Configurazione di 1 60 s (0 = disabilitato) 1)		
Configurazione di fabbrica				
Sensore	Pt100			
Tipo di collegamento	Collegamento a	3 fili		
Campo di misura	0 150 °C [32 .	302 °F]		
Smorzamento	Disattivato			
Segnalazione di errori	Scalabile verso	il basso		
Limiti uscita	Limite inferiore	3,8 mA		
	Limite superiore	20,5 mA		
Comunicazione				
Protocollo di comunicazione	Protocollo HAR	Γ [®] rev. 7,6 formazioni, vedere pagina 3		
Software di integrazione Driver dello strumento e software di integrazione HART®				
		→ Download gratuito da www.wika.it		
Software di configurazione WIKA				
→ Download gratuito da www.wika.it				
Configurazione	20Willoud gla			
Linearizzazione utente		I trasmettitore i dati caratteristici del sensore in base alle specifiche del il software (altri tipi di sensore possono essere utilizzati in questo mod		

Segnale di uscita			
Funzione del sensore, sensore doppio	Sensore 1, sensore 2 ridondante	sensore 1	e di uscita 4 20 mA è relativo al valore di processo del 1. Se il sensore 1 è in errore, il valore di processo del sensore tilizzato per il segnale di uscita (sensore 2 ridondante).
	Sensore 1 ridondante, sensore 2	sensore 2	e di uscita 4 20 mA è relativo al valore di processo del 2. Se il sensore 2 è in errore, il valore di processo del sensore tilizzato per il segnale di uscita (sensore 1 ridondante).
	Sensore 1, sensore 2 digitale	del senso segnalaz	e di uscita 4 20 mA è sempre relativo al valore di processo ore 1. Se il sensore 1 è in errore, il trasmettitore passa alla ione del difetto. I valori di processo dal sensore 2 possono terrogati mediante HART [®] .
	Valore medio	sensore 1	e di uscita 4 20 mA invia il valore medio dei due valori del 1 e sensore 2. Se un sensore è in errore, il valore di processo pre funzionante è l'uscita.
	Valore minimo	sensore 1	e di uscita 4 20 mA invia il valore minimo dei due valori del 1 e sensore 2. Se un sensore è in errore, il valore di processo pre funzionante è l'uscita.
	Valore massimo	del senso	e di uscita 4 20 mA invia il valore massimo dei due valori ore 1 e sensore 2. Se un sensore è in errore, il valore di o del sensore funzionante è l'uscita.
			e 4 20 mA in uscita invia la differenza tra il sensore 1 e 2. Se un sensore è in errore, viene attivata una segnalazione
Funzioni di monitoraggio			
Corrente di prova per il monitoraggio del sensore (TC)	Nom. 50 μA dura	ante il ciclo	di prova, altrimenti 0 μΑ
Corrente di prova per il monitoraggio del sensore (RTD)	Corrente di misu	ura (in funzi	ione del sensore)
Monitoraggio NAMUR NE89 (monitoraggio della resistenza della linea di alimentazione)	Termoresistenza fili)	a (3 e 4	Max. 50 Ω per ciascun filo
	3 fili		Monitoraggio della differenza di resistenza tra le linee 2 e 3 e le linee 5 e 6; un errore viene segnalato nel caso di una differenza > 0,5 Ω . $^{3)}$
	Termocoppia		$R_{Lmax} > 10 \text{ k}\Omega$
Monitoraggio rottura sensore	Configurabile tra Standard: scalal		
Monitoraggio del cortocircuito sensore, sensore di resistenza	Configurabile tramite software Standard: scalabile verso il basso		
Autodiagnostica	Attivato permanentemente, ad es. prova RAM/ROM, controllo logico di operatività del programma e prova di validità		
Monitoraggio del campo di misura	Monitoraggio del campo di misura impostato per deviazioni superiore/inferiore Standard: disattivato		
Monitoraggio del campo di misura	Monitoraggio del campo di misura impostato per deviazioni superiore/inferiore Standard: disattivato		

Segnale di uscita			
Funzione di monitoraggio quando sono connessi 2 sensori (sensore doppio)	Ridondanza	In caso di errore (rottura del sensore, resistenza del conduttore troppo elevata o al di fuori del campo di misura del sensore) di uno dei due sensori, il valore di processo sarà quello basato sul solo sensore funzionante. Non appena l'errore viene corretto, il valore di processo sarà nuovamente basato sui due sensori, o sul sensore 1.	
	Controllo dell'invecchiamento (monitoraggio della deriva del sensore)	Un messaggio di stato tramite HART® viene emesso quando la differenza di temperatura tra il sensore 1 e il sensore 2 supera un valore selezionato dall'utente. Tale monitoraggio genera un segnale solo se possono essere determinati due valori sensore validi e la differenza di temperatura è superiore al valore limite selezionato. (Non può essere selezionato per la funzionalità sensore 'Differenza', in quanto il segnale di uscita indica già il valore di differenza).	
	WIKA True Drift Detection	La tecnologia WIKA True Drift Detection è una combinazione specifica per sensori per il monitoraggio continuo di un sensore di resistenza. Non appena viene rilevata una deriva del segnale, l'errore viene segnalato dal trasmettitore di temperatura mediante una bandierina HART [®] come stato diagnostico. Un punto di misura difettoso viene quindi identificato immediatamente e prima della ritaratura successiva. → Per dettagli tecnici, si veda la documentazione speciale SP 05.26	
Tensione di alimentazione			
Alimentazione ausiliaria U _B	10,5 42 Vcc ⁴⁾ Attenzione: intervalli di alimentazione ausiliaria ristretti per le versioni con protezio antideflagrante (vedere "Valori caratteristici relativi alla sicurezza") e per la version estesa.		
	Carico $R_A \le (U_B - 10.5 \text{ V}) / 0.022 \text{ A con } R_A \text{ in } \Omega \text{ e } U_B \text{ in V (senza HART}^{\textcircled{\tiny{\$}}})$		
Tempo di risposta			
Tempo di salita t90	< 0,8 s ⁵⁾		
Tempo di riscaldamento ⁶⁾	Dopo circa 5 minuti lo strumento raggiunge i valori relativi alle specifiche tecniche (precisione) contenuti nella scheda tecnica		
Tempo di accensione (tempo per ricevere il primo valore misurato)	Max. 15 s		
Frequenza di misura tipica ⁷⁾	Aggiornamento del valore misurato ■ Sensore singolo > 6/s ■ Sensore doppio > 3/s		

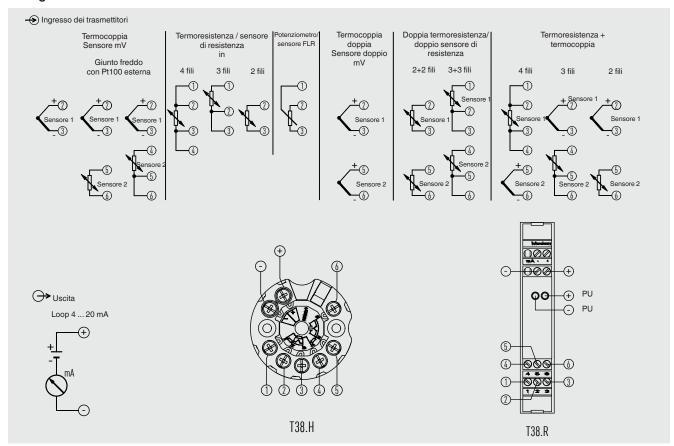
¹⁾ I valori tra parentesi rappresentano i valori predefiniti

²⁾ Questo modo operativo non è consentito per l'opzione SIL.

³⁾ Solo con esecuzione SIL

⁴⁾ Ingresso alimentazione ausiliaria protetto da polarità inversa. All'accensione (24 V (carico = 500 Ω)), è necessario un incremento di almeno 4 V/s dell'alimentazione ausiliaria; altrimenti il trasmettitore di temperatura rimane in uno stato sicuro a 3,5 mA.

^{5) &}lt; 1,0 s con sensore FLR


⁶⁾ Quando si usano le termocoppie, il tempo di riscaldamento può richiedere fino a 30 minuti (compensazione del giunto freddo).

⁷⁾ Per il sensore FLR è possibile ipotizzare la metà dei valori.

Attacchi elettrici		
Sezione dei conduttori		
Versione per montaggio in testina T38.H	Filo pieno	0,2 2,5 mm² (24 14 AWG)
	Trefolo con capocorda	0,14 1,5 mm ² (26 16 AWG)
T38.R, versione per montaggio su guida DIN	Filo pieno	0,2 2,5 mm² (24 14 AWG)
	Trefolo con capocorda	0,14 2,5 mm ² (26 14 AWG)
Resistenza del cavo 1)		
Sensore di resistenza	Max. 50 Ω ciascun filo, collegamento a 3/4 fili	
Termocoppia	Max. 10 $k\Omega$	
Tensione di isolamento (tra ingresso e uscita analogica)	1.500 Vca, (50 Hz / 60 Hz); 60 s	

¹⁾ Il monitoraggio della resistenza del cavo può essere disattivato (non vale per l'esecuzione SIL). In caso di superamento, le specifiche di precisione indicate non sono più valide.

Configurazione della morsettiera

Versione con display TND

Funzionamento/display:

Il display indica un valore misurato in corrente e informazioni aggiuntive relative a quale valore è (PV, S1-S2, ecc.). La selezione del valore visualizzato può essere effettuata tramite lo strumento di configurazione.

Nel caso in cui il trasmettitore dovesse rilevare un errore nella catena di misura, ciò sarà mostrato sul display con il numero di canale e il codice di errore.

T38 con display clip-on (TND)

PIH-W con T38 e TND

BSZ-H con T38 e TND

Quando si installa un trasmettitore montato in testina con il display nella custodia, occorre assicurare che venga usata una custodia con un trasparente. La custodia WIKA PIH-W, appositamente sviluppata per questa applicazione, è disponibile nella combinazione di un T38 con un display clip-on TND (vedere figura "PIH-W con T38 e TND" e accessori). In alternativa, il TND può essere installato nella copertura della testa di connessione BSZ-H, vedere la figura "BSZ-H con T38"

Regolazione dei sensori

Un metodo per migliorare la precisione della misura di temperatura può essere effettuato usando coefficienti Callendar-Van Dusen (termoresistenza al platino).

L'equazione Callendar-Van Dusen viene descritta come:

$$R_t = R_0[1 + AT + BT^2 + C(T - 100)T^3]$$

Per la migliore precisione del sistema, per generare i coefficienti A, B e C una termoresistenza al platino (RTD) va essere tarata individualmente.

→ Per ulteriori informazioni vedere l'informazione tecnica IN 00.29

Materiali	
Parti non a contatto con il fluido	
Versione per montaggio in testina T38.H	Plastica, PBT, fibra di vetro rinforzata
T38.R, versione per montaggio su guida DIN	Plastica

Condizioni operative		
Temperatura ambiente		
Standard	-40 +85 °C [-40 +185 °F]	
Esteso per temperature ambiente elevate 1)	-40 +105 °C [-40 +221 °F]	
Esteso per temperature ambiente basse 1)	-50 +85 °C [-58 +185 °F]	
Avanzato per SIL ²⁾	-40 +95 °C [-40 +203 °F]	
Temperatura di stoccaggio	-40 +85 °C [-40 +185 °F]	
Temperatura operativa TND	-30 +65 °C [-22 +149 °F]	
Umidità massima ammissibile		
Esecuzione per montaggio in testina T38.H IEC 60068-2-38:2022	Prova della variazione di temperatura max. 65 °C [149 °F] e -10 °C [14 °F], 95% di umidità relativa	
Esecuzione per montaggio su guida DIN T38.R IEC 60068-2-30:1999	Test della temperatura max 25 °C [77 °F] e 55 °C [131 °F], 80% di umidità relativa	
Classe climatica conforme a IEC 60654-1: 1993 3)	Cx (-40 +85 °C [-40 +185 °F], 5 95% u. r.)	
Nebbia salina conforme a IEC 60068-2-52: 2017	Grado di severità 1	
Resistenza alle vibrazioni secondo IEC 60068-2-6:2008	Prova Fc: 10 2.000 Hz, 10 g, ampiezza 0,75 mm [0,03 in]	
Resistenza agli urti secondo IEC 60068-2-27: 2008	Accelerazione/ampiezza degli urti	
Versione per montaggio in testina T38.H	100 g / 6 ms	
T38.R, versione per montaggio su guida DIN	15 g / 11 ms	
Caduta libera in conformità con IEC 60721-3-2:2018	1,5 m [4,9 ft]	
Grado di protezione dello strumento completo (conforme a IEC 60529)		
Versione per montaggio in testina T38.H	IP00 (elettronica completamente annegata)	
T38.R, versione per montaggio su guida DIN	IP20	
Compatibilità elettromagnetica (EMC) conforme a EN 55011:2022, EN IEC 61326, NAMUR NE21:2017	Emissione (gruppo 1, classe B) e immunità (applicazione industriale) [campo HF, linea HF, ESD, burst e surge]	

Versione speciale, non per montaggio su guida DIN, non per versione SIL
 Versione speciale, non per montaggio su guida DIN
 Non per esecuzione per montaggio su guida DIN

Omologazioni

Logo	Descrizione	Regione
CE	Dichiarazione conformità UE	Unione europea
	Direttiva EMC Emissione (gruppo 1, classe B) e immunità EN 61326 (ambienti industriali)	
	Direttiva RoHS	

Omologazioni opzionali

Logo	Descrizione	Regione
⟨£x⟩	Dichiarazione conformità UE	Unione europea
	Direttiva ATEX Aree pericolose	
IEC IECEx	IECEx Aree pericolose	Internazionale
€ Us	CSA	USA e Canada
	Aree pericolose	
EH[Ex	EAC Ex	Comunità economica
	Direttiva EMC	eurasiatica
	Aree pericolose	
(Ex Ucraina	Ucraina
	Aree pericolose	
INMETRO	INMETRO	Brasile
INMETRO	Metrologia, tecnologia di misura	
	Aree pericolose	
S s	KCs Aree pericolose	Corea
-	PESO Aree pericolose	India
Ex NEPS\	NEPSI Aree pericolose	Cina
-	ECAS	Emirati Arabi Uniti
	Aree pericolose	
B	PAC Kazakistan Metrologia, tecnologia di misura	Kazakistan

Informazioni del produttore e certificazioni

Logo	Descrizione
SIL	SIL 2 Sicurezza funzionale
-	Direttiva RoHS Cina
NAMUR	NAMUR EMC secondo NAMUR NE21 Segnalazione secondo NAMUR NE43 Monitoraggio rottura sensore secondo NAMUR NE89 Automonitoraggio e diagnostica degli strumenti da campo in modo conforme a NAMUR NE107 Rappresentazione uniforme della deviazione di misura degli strumenti da campo in modo conforme a NAMUR NE145 Strumenti da campo per applicazioni standard in modo conforme a NAMUR NE131

Certificati (opzione)

Certificati	
Certificati	Rapporto di prova 2.2Certificato d'ispezione 3.1
Taratura	Certificato di taratura DAkkS

[→] Per le omologazioni e i certificati, consultare il sito internet

Valori caratteristici rilevanti per la sicurezza (Ex)

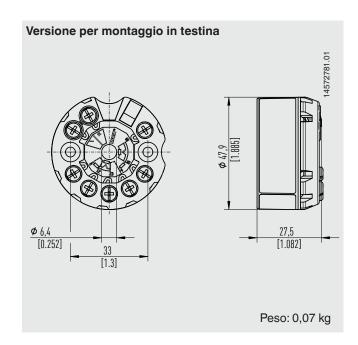
Omologazione ATEX, IECEx

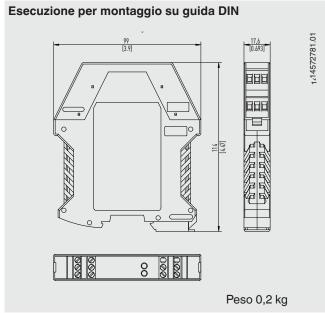
	Modello T38.*-Al** Applicazione con gas pericolosi	Modello T38.*-AC** Applicazione con gas pericolosi	Modello T38.*-Al** Applicazione con polveri pericolose
Marcatura Ex			
Versione per montaggio in testina	II 1G Ex ia IIC T6T4 Ga	II 3G Ex ic IIC T6T4 Gc	II 1D Ex ia IIIC T135° Da
Esecuzione per montaggio su guida DIN	II 2(1)G Ex ia [ia Ga] IIIC T6T4 Gb	II 3G Ex ic IIC T6T4 Gc	II 2(1)D Ex ia [ia Da] IIIC T135 °C Db
Valori di collegamento/alimentazion	ne e circuito del segnale a sicur	ezza intrinseca (loop di corrent	e 4 20 mA)
Morsetti	+/-	+/-	+/-
Alimentazione ausiliaria U _B 1)	10,5 30 Vcc	10,5 30 Vcc	10,5 30 Vcc
Massima tensione U _i	30 Vcc	30 Vcc	30 Vcc
Corrente massima I _i	130 mA	130 mA	130 mA
Massima potenza P _i	800/600 mW	800/600 mW	750 / 650 / 550 mW
Capacità interna effettiva C _i	1,7 nF	1,7 nF	1,7 nF
Induttanza interna effettiva L _i	Trascurabile	Trascurabile	Trascurabile

¹⁾ Ingresso alimentazione ausiliaria protetto da polarità inversa. All'accensione (24 V (carico = 500 Ω)), è necessario un incremento di almeno 4 V/s dell'alimentazione ausiliaria; altrimenti il trasmettitore di temperatura rimane in uno stato sicuro a 3,5 mA.

Ulteriori specifiche su: valori caratteristici rilevanti per la sicurezza (Ex)				
	Modello T38.*-AE** Ex ia IIC/IIB/IIA Ex ia IIIC	Modello T38.x-AC Ex ic IIC/IIB/IIA		
Valori di collegamento del circuito del sensore				
Morsetti	1 - 6	1 - 6		
Tensione massima U ₀	6,32 Vcc	6,32 Vcc		
Corrente massima I ₀	25 mA	25 mA		
Potenza massima P ₀	39 mW	39 mW		
Capacità esterna massima C ₀	24 μF	325 μF		
Induttanza massima esterna L ₀	50 mH	120 mH		
Rapporto induttanza/resistenza massima L_0/R_0	0,8 mH/Ω	1,55 mH/Ω		
Curva caratteristica	lineare			

	Modello T38.*-AE**	
	Applicazione con gas pericolosi	
Marcatura Ex	II 3G Ex ec IIC T6 T4 Gc	
Valori di collegamento/alimentazione e circuito del segnale a sicurezza intrinseca (loop di corrente 4 20 mA)		
Morsetti	+/-	
Tensione U _n	40 Vcc	
Corrente I _n	22,5 mA	


	Modello T38.*-AE**
Valori di collegamento del circu	ito del sensore
Morsetti	1-6
Tensione U _n	3 Vcc
Corrente I _n	0,66 mA
Potenza P _n	2 mW


Applicazione	Campo di temperatura ambiente	Classe di temperatura	Potenza P _i
Gruppo II	-50 +105 °C [-58 221 °F]	T4	600 mW
Gas	-50 +85 °C [-58 185 °F]	T4	800 mW
	-50 +75 °C [-58 167 °F]	T5	800 mW
	-50 +60 °C [-58 140 °F]	T6	600 mW
	-50 +50 °C [-58 122 °F]	T6	800 mW
Gruppo III	-50 +40 °C [-58 104 °F]	T135 °C	750 mW
Polveri	-50 +70 °C [-58 158 °F]	T135 °C	650 mW
	-50 +100 °C [-58 212 °F]	T135 °C	550 mW

Omologazione CSA

Valori caratteristici	Modello T38.*-Cl**	Modello T38.*-CC**	Modello T38.*-Cl**
relativi alla sicurezza	Applicazione per gas	Applicazione per gas	Applicazione per polveri
(Ex)	pericolosi	pericolosi	pericolose
Marcatura Ex			
Versione per montaggio in testina	CL I DIV GP A B C D T6 T4	CL I DIV 2 GP A B C D T6T4	CL II Zona 20 AEx/Ex ia IIC
	CL I Zona 0 AEx/Ex ia IIC T6T4 Ga	CL I Zona 2 AEx/Ex ic IIC T6T4 Gc	T135°C Da
Esecuzione per montaggio su guida DIN	CL I DIV 1 GP A B C D T6T4	CL I DIV 2 GP A B C D T6T4	CL II Zona 21 AEx/Ex ia IIC
	CL I Zona 1 AEx/Ex ia IIC T6T4 Gb	CL I Zona 2 AEx/Ex ic IIC T6T4 Gc	T6T4 Db

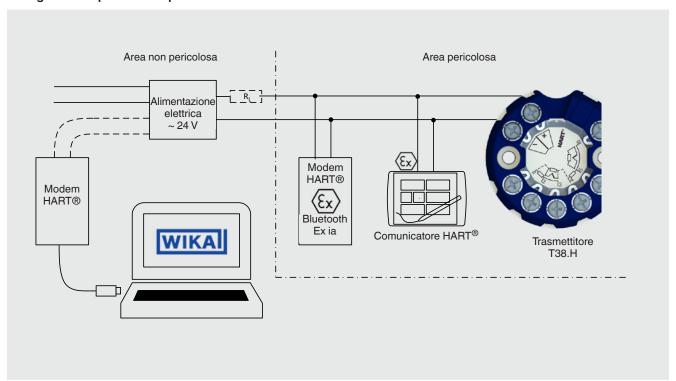
Dimensioni in mm [in]

Comunicazione

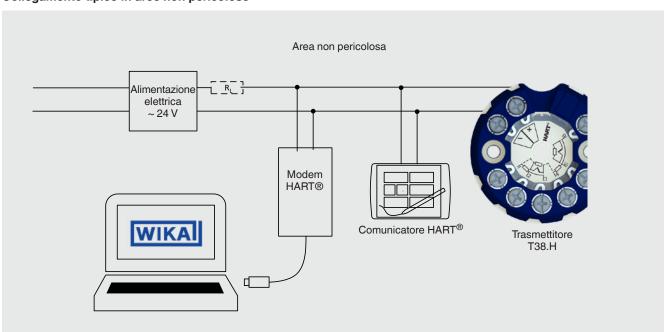
Protocollo HART® rev. 7,6

L'interoperabilità (ossia compatibilità tra componenti di diversi costruttori) è un requisito rigoroso degli strumenti HART®. Il trasmettitore T38 è compatibile con quasi ogni strumento software e hardware aperto; incluso:

- 1. Software di configurazione WIKA WIKAsoft-TT di facile utilizzo, scaricabile gratuitamente dal sito www.wika.it
- 2. Comunicatore HART® (ad es. AMS Trex):


 Descrizione del dispositivo T38 (device object file) integrata
- 3. Sistemi di Asset Management
 - 3,1 Completi, descrizione del dispositivo (DD) conforme a EDDL/FDI con pacchetto FDI: ad es. per Emerson AMS, Simatic PDM
 - 3,2 Device Type Manager (DTM): ad es. per PACTware, FieldMate

Attenzione:


Per la comunicazione diretta via interfaccia seriale di un PC/notebook è necessario un modem HART® (vedi "Accessori"). Come regola generale, i parametri che sono definiti tramite i comandi universali HART® possono, in linea di principio, essere editabili con tutti gli strumenti di configurazione HART®.

Configurazione

Collegamento tipico in aree pericolose

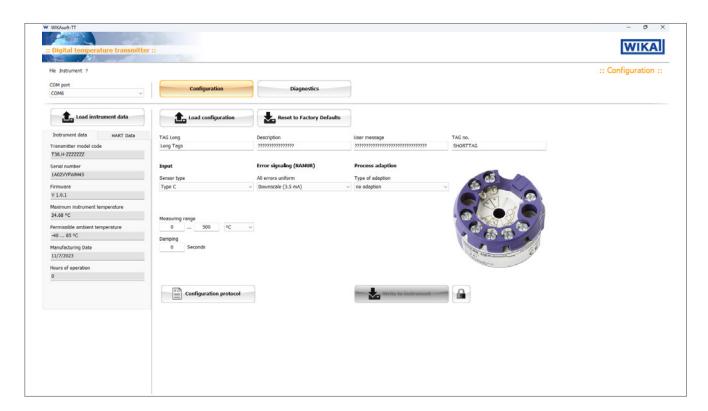
Collegamento tipico in aree non pericolose

RL = Resistenza di carico per la comunicazione HART® RL min. 230 Ω , max. 1.431 Ω

Esempio di calcolo

RMAX a 24 V = (24 V – 10,5 V) / 22 mA = 613 Ω RMAX a 42 V = (42 V – 10,5 V) / 22 mA = 1431 Ω UB_MIN a 230 Ω = (230 Ω * 22 mA) + 10,5 V = 15,6 V

Se RL è < 230 Ω nel circuito elettrico, RL deve essere aumentato ad almeno 230 Ω collegando delle resistenze esterne.


Collegamento dell'unità di programmazione PU-548

Attenzione:

Per la comunicazione diretta tramite l'interfaccia seriale di un PC/notebook è necessaria un'unità di programmazione modello PU-548 (vedi "Accessori" a pagina 19).

Software di configurazione WIKAsoft-TT

Accessori

Software di configurazione WIKA: download gratuito dal sito www.wika.it

Modello		Descrizione	Numero d'ordine
	DIH50, DIH52 con custodia da campo	Modulo display DIH50 senza alimentazione ausiliaria separata, ridimensiona automaticamente quando cambia il campo di misura e l'unità tramite monitoraggio della comunicazione HART [®] , visualizzatore a cristalli liquidi a 5 cifre, visualizzatore con grafico a barre a 20 segmenti, display girevole a passi di 10°, con protezione antideflagrante II 1G EEx ia IIC Materiale: Alluminio / acciaio inox Dimensioni: 150 x 127 x 138 mm → Per maggiori informazioni, vedere la scheda tecnica AC 80.10	A richiesta
	PIH-X Testa di connessione	Teste di connessione modulari; possono essere combinate con trasmettitore T38 come strumento completo; Disponibile con trasparente → installazione possibile del TND Sorprendente stabilità conforme a C5-M (senza parti di montaggio) Con protezione antideflagrante Materiale: Alluminio → Per ulteriori specifiche, vedere la scheda tecnica AC 80.30	A richiesta
	TND – Display numerico della temperatura	Modulo indicatore TND, display a cristalli liquidi a 5 cifre	33025404
	BSZ-H	Testa di connessione, combinabile con il trasmettitore T38 Disponibile con trasparente → installazione possibile del TND Con protezione antideflagrante Materiale: Alluminio	A richiesta
	Unità di programmazione modello PU-548	Unità di programmazione per interfaccia USB per uso con il software di configurazione WIKAsoft-TT Facile da usare Indicatore di stato a LED Costruzione compatta Non è ora necessaria un'ulteriore tensione di alimentazione sia per l'unità di programmazione che per il trasmettitore Incl. 1 connettore rapido magnetico, modello magWIK	14231581
And a second	Adattatore	Adatto a TS 35 in modo conforme a DIN EN 60715 (DIN EN 50022) o a TS 32 in modo conforme a DIN EN 50035 Materiale: plastica/acciaio inox Dimensioni: 60 x 20 x 41,6 mm	A richiesta
	Adattatore	Adatto a TS 35 conforme a DIN EN 60715 (DIN EN 50022) Materiale: acciaio, stagnato Dimensioni: 49 x 8 x 14 mm	A richiesta
4	Connettore rapido magnetico, modello magWIK	Sostituisce i connettori a coccodrillo e i terminali HART® Connessione elettrica rapida, sicura ed affidabile Per tutte le attività di configurazione e calibrazione	14026893

Modem HART®

Modello		Descrizione	Numero d'ordine	
Unità di programmazione, modello PU-H				
	VIATOR® HART® USB	Modem HART® per interfaccia USB	11025166	
	VIATOR [®] HART® USB PowerXpress [™]	Modem HART® per interfaccia USB	14133234	
	VIATOR® HART® RS-232	Modem HART® per interfaccia RS-232	7957522	
	VIATOR® HART® Bluetooth® Ex	Modem HART® per interfaccia Bluetooth, Ex	11364254	

info@wika.it www.wika.it

Informazioni per l'ordine

Modello / Protezione antideflagrante / Specifiche tecniche SIL / Configurazione / Temperatura ambiente consentita / Certificati / Opzioni

© 04/2023 WIKA Alexander Wiegand SE & Co. KG, tutti i diritti riservati. Le specifiche tecniche riportate in questo documento rappresentano lo stato dell'arte al momento della pubblicazione. Ci riserviamo il diritto di apportare modifiche alle specifiche tecniche ed ai materiali.

Pagina 20 di 20

